31 research outputs found

    Respiration-Locking of Olfactory Receptor and Projection Neurons in the Mouse Olfactory Bulb and Its Modulation by Brain State

    Get PDF
    For sensory systems of the brain, the dynamics of an animal’s own sampling behavior has a direct consequence on ensuing computations. This is particularly the case for mammalian olfaction, where a rhythmic flow of air over the nasal epithelium entrains activity in olfactory system neurons in a phenomenon known as sniff-locking. Parameters of sniffing can, however, change drastically with brain states. Coupled to the fact that different observation methods have different kinetics, consensus on the sniff-locking properties of neurons is lacking. To address this, we investigated the sniff-related activity of olfactory sensory neurons (OSNs), as well as the principal neurons of the olfactory bulb (OB), using 2-photon calcium imaging and intracellular whole-cell patch-clamp recordings in vivo, both in anesthetized and awake mice. Our results indicate that OSNs and OB output neurons lock robustly to the sniff rhythm, but with a slight temporal shift between behavioral states. We also observed a slight delay between methods. Further, the divergent sniff-locking by tufted cells (TCs) and mitral cells (MCs) in the absence of odor can be used to determine the cell type reliably using a simple linear classifier. Using this classification on datasets where morphological identification is unavailable, we find that MCs use a wider range of temporal shifts to encode odors than previously thought, while TCs have a constrained timing of activation due to an early-onset hyperpolarization. We conclude that the sniff rhythm serves as a fundamental rhythm but its impact on odor encoding depends on cell type, and this difference is accentuated in awake mice

    Sample Preparation and Warping Accuracy for Correlative Multimodal Imaging in the Mouse Olfactory Bulb Using 2-Photon, Synchrotron X-Ray and Volume Electron Microscopy

    Get PDF
    Integrating physiology with structural insights of the same neuronal circuit provides a unique approach to understanding how the mammalian brain computes information. However, combining the techniques that provide both streams of data represents an experimental challenge. When studying glomerular column circuits in the mouse olfactory bulb, this approach involves e.g., recording the neuronal activity with in vivo 2-photon (2P) calcium imaging, retrieving the circuit structure with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT) and/or serial block-face scanning electron microscopy (SBEM) and correlating these datasets. Sample preparation and dataset correlation are two key bottlenecks in this correlative workflow. Here, we first quantify the occurrence of different artefacts when staining tissue slices with heavy metals to generate X-ray or electron contrast. We report improvements in the staining procedure, ultimately achieving perfect staining in ∼67% of the 0.6 mm thick olfactory bulb slices that were previously imaged in vivo with 2P. Secondly, we characterise the accuracy of the spatial correlation between functional and structural datasets. We demonstrate that direct, single-cell precise correlation between in vivo 2P and SXRT tissue volumes is possible and as reliable as correlating between 2P and SBEM. Altogether, these results pave the way for experiments that require retrieving physiology, circuit structure and synaptic signatures in targeted regions. These correlative function-structure studies will bring a more complete understanding of mammalian olfactory processing across spatial scales and time

    jULIEs: nanostructured polytrodes for low traumatic extracellular recordings and stimulation in the mammalian brain

    Get PDF
    Objective.Extracellular microelectrode techniques are the most widely used approach to interrogate neuronal populations. However, regardless of the manufacturing method used, damage to the vasculature and circuit function during probe insertion remains a concern. This issue can be mitigated by minimising the footprint of the probe used. Reducing the size of probes typically requires either a reduction in the number of channels present in the probe, or a reduction in the individual channel area. Both lead to less effective coupling between the probe and extracellular signals of interest.Approach.Here, we show that continuously drawn SiO2-insulated ultra-microelectrode fibres offer an attractive substrate to address these challenges. Individual fibres can be fabricated to >10 m continuous stretches and a selection of diameters below 30µm with low resistance (<100 Ω mm-1) continuously conductive metal core of <10µm and atomically flat smooth shank surfaces. To optimize the properties of the miniaturised electrode-tissue interface, we electrodeposit rough Au structures followed by ∼20 nm IrOx film resulting in the reduction of the interfacial impedance to <500 kΩ at 1 kHz.Main results. We demonstrate that these ultra-low impedance electrodes can record and stimulate both single and multi-unit activity with minimal tissue disturbance and exceptional signal-to-noise ratio in both superficial (∼40µm) and deep (∼6 mm) structures of the mouse brain. Further, we show that sensor modifications are stable and probe manufacturing is reproducible.Significance.Minimally perturbing bidirectional neural interfacing can reveal circuit function in the mammalian brainin vivo

    Functional and multiscale 3D structural investigation of brain tissue through correlative in vivo physiology, synchrotron microtomography and volume electron microscopy

    Get PDF
    Understanding the function of biological tissues requires a coordinated study of physiology and structure, exploring volumes that contain complete functional units at a detail that resolves the relevant features. Here, we introduce an approach to address this challenge: Mouse brain tissue sections containing a region where function was recorded using in vivo 2-photon calcium imaging were stained, dehydrated, resin-embedded and imaged with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT). SXRT provided context at subcellular detail, and could be followed by targeted acquisition of multiple volumes using serial block-face electron microscopy (SBEM). In the olfactory bulb, combining SXRT and SBEM enabled disambiguation of in vivo-assigned regions of interest. In the hippocampus, we found that superficial pyramidal neurons in CA1a displayed a larger density of spine apparati than deeper ones. Altogether, this approach can enable a functional and structural investigation of subcellular features in the context of cells and tissues

    Membrane permeation of arginine-rich cell-penetrating peptides independent of transmembrane potential as a function of lipid composition and membrane fluidity

    Get PDF
    Cell-penetrating peptides (CPPs) are prominent delivery vehicles to confer cellular entry of (bio-) macromolecules. Internalization efficiency and uptake mechanism depend, next to the type of CPP and cargo, also on cell type. Direct penetration of the plasma membrane is the preferred route of entry as this circumvents endolysosomal sequestration. However, the molecular parameters underlying this import mechanism are still poorly defined. Here, we make use of the frequently used HeLa and HEK cell lines to address the role of lipid composition and membrane potential. In HeLa cells, at low concentrations, the CPP nona-arginine (R9) enters cells by endocytosis. Direct membrane penetration occurs only at high peptide concentrations through a mechanism involving activation of sphingomyelinase which converts sphingomyelin into ceramide. In HEK cells, by comparison, R9 enters the cytoplasm through direct membrane permeation already at low concentrations. This direct permeation is strongly reduced at room temperature and upon cholesterol depletion, indicating a complex dependence on membrane fluidity and microdomain organisation. Lipidomic analyses show that in comparison to HeLa cells HEK cells have an endogenously low sphingomyelin content. Interestingly, direct permeation in HEK cells and also in HeLa cells treated with exogenous sphingomyelinase is independent of membrane potential. Membrane potential is only required for induction of sphingomyelinase-dependent uptake which is then associated with a strong hyperpolarization of membrane potential as shown by whole-cell patch clamp recordings. Next to providing new insights into the interplay of membrane composition and direct permeation, these results also refute the long-standing paradigm that transmembrane potential is a driving force for CPP uptake

    DNGR-1-tracing marks an ependymal cell subset with damage-responsive neural stem cell potential

    Get PDF
    Cells with latent stem ability can contribute to mammalian tissue regeneration after damage. Whether the central nervous system (CNS) harbors such cells remains controversial. Here, we report that DNGR-1 lineage tracing in mice identifies an ependymal cell subset, wherein resides latent regenerative potential. We demonstrate that DNGR-1-lineage-traced ependymal cells arise early in embryogenesis (E11.5) and subsequently spread across the lining of cerebrospinal fluid (CSF)-filled compartments to form a contiguous sheet from the brain to the end of the spinal cord. In the steady state, these DNGR-1-traced cells are quiescent, committed to their ependymal cell fate, and do not contribute to neuronal or glial lineages. However, trans-differentiation can be induced in adult mice by CNS injury or in vitro by culture with suitable factors. Our findings highlight previously unappreciated ependymal cell heterogeneity and identify across the entire CNS an ependymal cell subset wherein resides damage-responsive neural stem cell potential

    Physiological investigation of chemosensory mechanisms in the mammalian olfactory and vomeronasal system

    Get PDF
    Most vertebrates have developed several complex olfactory subsystems that allow detecting and discriminating thousands of chemical cues and thus enable interaction with the environment. This renders the sense of smell as an essential modality for the survival of individuals and, accordingly, the whole species. However, many physiological mechanisms underlying chemosensory signaling are still elusive. Therefore, the overall aim of my thesis was to gain deeper insight into olfactory signaling mechanisms. Specifically, my research focused on three physiological aspects in the peripheral part of the mouse olfactory system. First, I aimed to characterize a prototypical member of the recently identified family of vomeronasal formyl peptide receptors (FPR-rs) that remain, to date, physiologically unexplored. Together with the group of Prof. Dr. Ivan Rodriguez from the University of Geneva, we created a transgenic mouse model that expresses a fluorescent marker together with the FPR-rs3 receptor in VSNs. Using whole-cell patch-clamp recordings, I providedan in-depth comparative biophysical characterization of cells expressing FPR-rs3 including their passive and active membrane properties, as well as several voltage-activated conductances and action potential discharge patterns. My results revealed striking similarities, as well as some differences between control neurons and FPR-rs3 expressing cells. Together, these results provide a foundation for future functional studies of FPR-rs neurophysiology. Second, in a collaborative project with Prof. Dr. Lisa Stowers and her group at the Scripps Research Institute, I investigated the response profiles of VSNs upon stimulation with urinary proteins. MUPs have previously been described as activators of basal VSNs. Using extracellular recordings, I observed that MUPs are encoded in a combinatorial fashion, reminiscent of the more broadly tuned OSNs in the MOE. Thus, my resultschallenge the current labeled line coding model for the VNO. Moreover, we provided evidence that MUPs, as single compounds, promote multiple innate behaviors. Third, I investigated the role of CaCCs in olfactory signaling. Together with Prof. Dr. Eva M. Neuhaus from the University of Jena, we analyzed different anoctamins in regard to their function as CaCC. I performed whole-cell patch-clamp recordings and Ca2+ imaging experiments with recombinantly expressed anoctamins to examine their Cl- conductance and Ca2+ sensitivity. My results contributed to a study that revealed anoctaminmicrodomains in OSN cilia, suggesting oligomerization and modulation of the Cl- conductance in OSNs. These findings indicate that the native CaCC in OSNs is composed of several anoctamins.Together, the data I obtained in this thesis provide new insights in physiological mechanisms of the peripheral olfactory system and their influence on behavior. The majority of the data on vomeronasal FPRs have been published (Ackels et al., 2014). Moreover, parts of the results presented in this thesis on the coding of MUPs (Kaur et al., 2014) and on the role of anoctamins (Henkel et al., 2014) have also recently been published

    In-depth Physiological Analysis of Defined Cell Populations in Acute Tissue Slices of the Mouse Vomeronasal Organ

    Get PDF
    In most mammals, the vomeronasal organ (VNO) is a chemosensory structure that detects both hetero- and conspecific social cues. Vomeronasal sensory neurons (VSNs) express a specific type of G protein-coupled receptor (GPCR) from at least three different chemoreceptor gene families allowing sensitive and specific detection of chemosensory cues. These families comprise the V1r and V2r gene families as well as the formyl peptide receptor (FPR)-related sequence (Fpr-rs) family of putative chemoreceptor genes. In order to understand the physiology of vomeronasal receptor-ligand interactions and downstream signaling, it is essential to identify the biophysical properties inherent to each specific class of VSNs. The physiological approach described here allows identification and in-depth analysis of a defined population of sensory neurons using a transgenic mouse line (Fpr-rs3-i-Venus). The use of this protocol, however, is not restricted to this specific line and thus can easily be extended to other genetically modified lines or wild type animals

    Role of CD36 in fatty acid detection by the olfactory system

    No full text
    corecore